Adapting Hybrid Ann/hmm to Speech Variations

نویسندگان

  • Stefano Scanzio
  • Dario Albesano
  • Roberto Gemello
  • Pietro Laface
  • Franco Mana
چکیده

A technique is proposed for the adaptation of automatic speech recognition systems using Hybrid models combining Artificial Neural Networks with Hidden Markov Models. We investigated in this paper the extension of the classical approach consisting in applying linear transformations not only to the input features, but also to the outputs of the internal layers. The motivation is that the outputs of an internal layer represent a projection of the input pattern into a space where it should be easier to learn the classification or transformation expected at the output of the network. To reduce the risk that the network focuses on new data only, loosing its generalization capability (catastrophic forgetting), an original solution, Conservative Training is proposed. We illustrate the problem of catastrophic forgetting using an artificial test-bed, and apply our techniques to a set of adaptation tasks in the domain of Automatic Speech Recognition (ASR) based on Artificial Neural Networks. We report on the adaptation potential of different techniques, and on the generalization capability of the adapted networks. The results show that the combination of the proposed approaches mitigates the catastrophic forgetting effects, and always outperforms the use of the classical linear transformation in the feature space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid HMM/Neural Network based Speech Recognition in Loquendo ASR

This paper describes hybrid Hidden Markov Models / Artificial Neural Networks (HMM/ANN) models devoted to speech recognition, and in particular Loquendo HMM/ANN, that is the core of Loquendo ASR. While Hidden Markov Models (HMM) is a dominant approach in most state-of-the-art speaker-independent, continuous speech recognition systems (and commercial products), Artificial Neural Networks (ANN) a...

متن کامل

Myanmar Language Speech Recognition with Hybrid Artificial Neural Network and Hidden Markov Model

There are many artificial intelligence approaches used in the development of Automatic Speech Recognition (ASR), hybrid approach is one of them. The common hybrid method in speech recognition is the combination of Artificial Neural Network (ANN) and Hidden Markov Model (HMM). The hybrid ANN/HMM is able to classify the phoneme model and to combine the strength of HMM in sequential modeling struc...

متن کامل

On recognition of non-native speech using probabilistic lexical model

Despite various advances in automatic speech recognition (ASR) technology, recognition of speech uttered by non-native speakers is still a challenging problem. In this paper, we investigate the role of different factors such as type of lexical model and choice of acoustic units in recognition of speech uttered by non-native speakers. More precisely, we investigate the influence of the probabili...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Phonetic alignment: speech synthesis based vs. hybrid HMM/ANN

In this paper we compare two different methods for phonetically labeling a speech database. The first approach is based on the alignment of the speech signal on a high quality synthetic speech pattern, and the second one uses a hybrid HMM/ANN system. Both systems have been evaluated on French read utterances from a speaker never seen in the training stage of the HMM/ANN system and manually segm...

متن کامل

New feedback method of hybrid HMM/ANN methods for continuous speech recognition

In the continuous speech recognition, the co-pronunciation between two successive phonemes seriously disturb recognition effect. It is difficult for pure hidden Markov model(HMM) methods to cope with the co-pronunciation, because HMM methods consider that two successive frames of speech are independant. The hybrid HMM and artificial neural networks(ANN) methods with feedback MLP[1,3] provide th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006